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ABSTRACT 

This paper is concerned with the properties of a 

class of nonlinear coupled R, L, C networks. Sufficient 

conditions a r e  given which insure a unique response de- 

fined by a set  of differential equations in the normal form. 

Next we study the stability of these networks and,relate 

the property of asymptotic atability with the property of , 

"weaktt observability at the resistor terminals. 
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I. Introduction and Notation 

This paper is concerned with the properties of a class of coupled 

nonlinear R, L, C networks. We first impose conditions on the network 

topology and on the network elements which insure a unique response 

defined by a set  of differential equations in  the normal form. 

nature of the conditions and of the results is similar to that given by 

Desoer and Katzenelson and by Holzmann and Liu. 

proof is a "constructive" method of solving a class of nonlinear alge- 

braic equations. Next we study'the stability of this class of networks 

and relate the question of asymptotic stability to the notion of obser- 

vability. 

The 

1 A novel part  of the 

We show that for "passive1' networks with linear inductors and 

linear capacitors, the notion of asymptotic stability coincides with that 

of observability at the resistor terminals. For  nonlinear passive net- 

works this equivalence is obtained i f  we suitably weaken the definition . 

. . of observability. 

As far as possible, t he  notation used here is that of Kuh and 

be a nonseparable connected network, and le t  ' Rohrer. Thus let 

r b e  a normal t ree  of z. W e  assume that each t r ee  branch is in 

parallel with a current source and each link contains a voltage source. 

The sources a r e  assumed independent. We denote the link element 

voltages (currents) by vR(iR), v,.(is), vL(iL) ; the voltage sources - 
in the links - by eR, eS, eL;  the t r ee  branch element voltages (currents) 

by vG(iG)# vc(iG), v (i ) and the current sources - across  the t r ee  

branches - by j,, j, and j 

r r  
Then the Kirchhoff voltage law is given r* 

by (see 4) 



vs Fsc vc = eS 

v~ + F~~ vc + F~~ V~ 

vL t FLC vC t FLG vG t FLr vr = eL 

and the Kirchhoff current law is given by 

T T T iC - Fsc is - FRC iR - FLC iL - - jc 

iG 

ir 

A .  I - FRG iR - FLG iL - - jG 

XI. Normal Form 

The following conditions are  imposed throughout. Let p stand 

for R, L or  C. Then there is a normal t r ee  r o f  %such that 

- c1. p-elements in the links a r e  coupled among themselves. 

the p-elements in the t ree  branches a r e  coupled among 

themselves. 

Dually, 

~ 

C 2. The link elements &re either voltage-controlled o r  flux-controlled, - 
~ 

whereas the elements in the t r ee  branches a r e  either current-  

I controlled or charge- controlled. 
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More explicitly, C1 and C2 become, 

A A A 
iR = iR(vR) i L = i L L  (+ ) and qs = qs(vs) 

A A A 
vG = v (i ) Cpr = Cp (i ) and vc = v (q ) e G G  r r  c c  

Equations (1) - (3) can be conveniently rewritten as 

T A  T i (v ) t iG = **  jG t FG iL , - F ~ ~  R R JG 

W e  also have the differential equation 
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;1 = FLCiL t FRCiR 1 + j, 

We remark that q is the vector of the fundamental cutset charges and 

Q is the vector of the fundamental loop fluxes. 

equations R, L and C are of the form: 

W e  also notice that the 

x t A f(y) = u 

T - A g(x) t y = v 

n n m where x,' u E Rn; y, v E Rm; f :  Rm 4 R  ; g :  R --R and A is a fixed - 
n x m matrix. We now state some conditions on f and g such that 

( * )  has a unique solution in x and y for each value of u and V. 

Theorem 1.1 If the functions f and g satisfy conditions M and H2 

or  they satisfy conditions Kl and H3, then ( * )  has a unique solution. 

H1. - 

H2. - 

f and g a re  differentiable and the Jacobian matrice's 

a a€ (y) and G ( x )  = n - af (x) are positive semi-definite t t  . 
BX F ( Y )  = - aY 

for all x and y. 

Either Fiy) is a symmetric positive definite matrix for all y o r  

G(x) is a symmetric positive definite matrix €or all x. 



H3: Either F(y) is diagonal for all y o r  G(x) is diagonal for all x. - 
Proof: 

equations \ 

We wish to determine the solutions (if any) to the set of 
.-. 

x t A f(y) = u 

1 , 2  T 2 
Define a(% y) = ~ { l l x  t A f(y) 7 UII t II -A g(x) t y - VII  1 . Then x 

and y solve (*)  'if and only if a(x ,  y) = 0. Consider the differential 

equation 

-{(x t A f(y) - u) - [AT G(x)JT (-AT g(x) t y-v)}  
dx aa 
dt ax 
- = - - =  

Along a solution of the differential equation, 

' T  Define z = - A g(x) .+ u - v 

and w = x t A f(y) - 'U . 



da 
dt Then - = 0 i f  and onlyif 

i ( A  r - 1  F ( Y ) I T  -(ATG(x))T] I C1-j & [ r-J = 0 .  

(3) 
T T Now det(m) = det (I t A F(y)  A G(x)) = det (I t A G(x) A F(y)). It is 

easy to show that H2 implies 'det M > 1. and H3 implies det M > 1. 

Hence (3) holds i f  and only i f  w .= 0 and z = 0, i. e., 

i f  x and y solve (*).  

- - 
= 0 if  and only iE 

Also det M > 1 implies that ~ ( x ,  y) -.oo as - 
. I I X I I  t I I Y I I  400.  A theorem of Liapunov5 shows that ( * )  has at least one 

solution. We now prove uniqueness. Suppose (xl, yl) and (x2, y2) 

solve ( * )  for some fixed u and v. Then 

Consider one-dimensional arcs x(e) and y(8), 0 8 1 given by - -  



Then dx 'z .xL - X2 and 3 = y1 - y2. Furthermore, (4) is equivalent 

to ( 5 ) .  . 

1 1 
G( x(0) ) de have the same properties as 

F(y) and G(x) respectively so that (5) holds if and only if 5 = x2 and 
s,;o 

But SezoF( Y(Q) 1 de and 

, ' Y l  = Y2' 
Q. E. D. 

In the following we assume that f and g satisfy the hypotheses 

of Theorem 1.1. 

Corollary 1.1: The solution of ( * )  can be obtained as the limit of the 

solution of an asymptotically stable differential equation. 

Remark: If we suitably bound the norms of the matrices F(*) and 

G(y), then the differential equation can be replaced by a difference equa- 
6 tion. See Katzenelson and Seitelman. 

A Let w = g(x) and z f(y). The proof of the next two corol- 

laries are straightforward and hence omitted. 



aw 
au  Corollary 1.2: (a) - is positive semi-definite. It is positive definite 

if G(x) is positive definite for all X. az 
av Dually - is positive semi- 

definite. It is positive definite if F(y) is positive definite for all y. 

(b) If G(x) and F(y) are symmetric matrices, then 8~ aw and & a r e  

also symmetric. 

Corollary 1.3: (a) If I I U I I  t I IVII  4- then IIXII t IIYII -em. 

(b) If f and g also satisfy 

then 

and 

<u, w> > o for u # o .  

< v 8  z> > O  for v # o .  

We now impose the conditions of Theorem 1.1 on the network '~ 
characteristics . 

Theorem 2.1: If each of the equations L, C, and R satisfies the 

hypotheses of Theorem 1, then the network response is unique and is 

defined by a differential equation in normal form. 

' .  

~ .. . 

. 

Proof: 

solved giving, 

Theorem 1.1 implies that the equations R, L, and C can be 
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- *  R, j$, iR = F (&*, j*) R R  G vG = v (e 

A T Furthermore since e* 4 eR - FRC vc and j* = j, t FLG iL we R G 
can obtain (using 7)) vG and iR in  te rms  of q, 4, e 

stituting these functions in (D) we obtain'the right hand side of D as 

and j,. Sub- R 

a function of q, +,, and the sources. 
Q. E. D. 

III. Stability 

a) From now on we assume that a l l  the sources a r e  identically zero. 

We also suppose that the network satisfies all the hypotheses of 

Theorem 2.1 and in addition the following conditions 

H4. The resistors a r e  passive, Le. ,  - 

H5. The inductors and capacitors are passive, i. e. , - 
I 



--- 

Furthermore, it will be 'assumed that the Jacobian matrices 

associated with the inductors and capacitors, i. e, the matrices 

a r e  symmetric. a i r '  
WIl 8iL avC 

ag, - -  

By the well-known theorem on exact differential forms' we 

obtain . 

Lemma 3.1 . The hypothesis H5 implies that there .are  real-valued 

pLs pss and pc of the variables ir, +L, vs and vc r' .functions p 

such that, 

F u r t h e m r e  each bf the pi > 0 and pi(xi) = 0 if and only if xi = 0. - 
We will now make assumption 

. .  
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H6. The tree-branch capacitors and the link inductors are realistic, - 
i. e., 

ae  

Remark: 

represent a conservative system. 

charge in the t ree  capacitors o r  the flux in the link inductore become 

unbounded, the energy stored also becomes unbounded. 

H5 is equivalent to saying that the inductors and capacitors 

H6 is equivalent to saying that as the 

b)  A built-in Liapunov function: Let q and be fixed and consider, 

We f i rs t  remark that assumption H5 and Corollary 1.2b imply that 

a iL 
are symmetric matrices so that the integral in  (8) is - and 

independent of the path of integration. Therefore p(q, 9) is a well 

defined number. '\ 

avC w as 
' 

'\ 

Lemma 3.2. 

q = 0 and + = 0. 

(b) 

(a) p(q, 9 )  - > 0 for  a l l  q, (p and p(q, 9 )  if and only i f  

Furthermore p(q, 9 )  -co as sqii + 119 II 4 0 0 .  



a iL 
a r e  positive semi-definite Proof: (a) By Corollary 1.2a - and - 

matrices. This implies that p(q, + )  - > 0. By H5 and Corollary 1.3b 

avC 
as a+ 

p(q, +) = 0 if  and only if q = 0 and + = 0. 

(b) 

Now from (8) and the equations (L) and (C) we have 

By Corollary 1.3a, i i q i i  t S+II -coo implies that iiqcii t I I V ~ I I  -.w. 

. 

. .. .. 

Now, ’ 

by H5. Also by H6, pc(qc) t p,(+,) 4 0 0  as i i q c i i  t 119~ i i  -,m. Hence 



Suppose q(t) and +(t) is 

in the initial condition q(0) and 

the solution of the normal form start ing 

. 

< 0 for all t and - 

= 0 if and only if VR = 0 and iG = 0. 

The last two statements follow from H4. We therefore have 

Theorem 3.1: (a) 

of Theorem' 2.1 and H4-H6 is bounded. 

The zero-input of a network satisfying the conditions 

(b) The network is globally asymptotically stable5 i f  and only i f  

v,(t) Z 0 and iG(t) E 0 for all t implies that q(t) 3 0 and +(t) E 0 for 

all t. 

Proof: 

Then since -$ < 0 we have p(t) < p(0) for all t. Since p(q, +) 3 0 0 .  

as sqii t II+II -00  we have q(t) and +(t) bounded for all t. 

(b) 

$ E O  for all t, o r  equivalently v (t) E 0 and constant, i. e., 

(a) Let q(0) and +(O) be the initial state and p(t) = p( q(t), +(t)). - 
d - - 

Consider the set of solutions of the normal form for vyhich p is a 

R 

e 



i,(t) 5 0. 

following. pair of equations, 

By (D) and (R) this set is identical to the solutions of the 
1 .  

and 

m 

.-- 

It is well known that all the trajectories of the network state q and + 
converge to the trajectories which satisfy (9) and (10). 

work is globally asymptotically stable i f  and only if (9) and (10) have the 

Hence the net- 

trivial solution q(t) E 0 and +(t) 5 0. 

Q. E. D. 

Definition 3.1: 

i f  v,(t) = 0,  i,(t) = 0 over a nonvanishing time interval implies that 

q(t) E 0 and +(t) E 0 for all t. 

(a) The network is observable at the resistor terminals 

(b) The network is weakly observable at the resistor terminals i f  

vG(t) Z 0 and iR(t) 3 0 for all t implies that q(t) E 0 and +(t) 5 0.  

t 

Corollary 3.2: (a) The network is observable +the network is 

weakly observable. 
\ 



(b) The network is globally asymptotically stable i f  and only i f  it is 

weakly observable at the resistor terminals. 

(c )  For  networks'with - linear inductors and linear capacitors but non- 

linear resistors the network is asymptotically stable i f  and only i f  it is 

observable at the reeietor terminals. 

Proof: 

3.lb and (c) is a well-known fact about time-invariant linear differen- 

(a) Follows from the definition; (b) is equivalent to Theorem 

tial equations.. 
Q. E. D. 

Corollary 3.2(c) gives a useful stability criterion for networks 

with linear inductors and capacitors. Suppose that the inductor and 

capacitor characteristics can be expressed as iL = I?&L, = Lir ,  

= Cvs where I?, L, S and C a r e  positive definite symmetric qS 
matrices. Then simple manipulations yield, Q =g iL and q = cyc 

t FLr LFLr I and = [S-' + F& C Fsc 1 . 
Substituting in  (9) and (10) yields 

&iL = - F L C v C  

and 
\ 



. 

A Let -A = 

-1 T 
0 FLC 

0 0s- 1 FLC 

. 

Then (11) and (12) a r e  equivalent to 

Bx = 0 .  

and B = 
. -. 

FRC 0 

m 

0 F t G  . . 

By the well-known conditions’ for observability of a l inear time- 

invariant system we get 

Corollary 3.3: 

work is asymptotically stable if and only if the columns of the matrix 

If the inductors imd capacitors a r e  linear, then the net- 

L 

spans Rn where A and B a r e  defined in  (13) and A has dimension 

n x n. 
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To avoid notational problems we assume that the network is time- 
invariant . 
An n x n matrL M is positive semi-definite i f  < x, M x >  - > 0 
for all x. It is positive definite i f  < x, M x  > > 0 for all 
x # 0. 
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